Faculty

Tumor Biology Training Program Faculty

Faculty within the Tumor Biology Training Program are members of the Lombardi Comprehensive Cancer Center (LCCC) at Georgetown University.  LCCC members are aligned with one of the four research programs within the Cancer Center. Additional faculty members who are affiliated with the Tumor Biology Training Program (Supporting Faculty) teach within the Program, serve on thesis committees, and may serve as co-mentors. Click on the links below to see which faculty are associated with the various research program. Clicking on the individual faculty names will reveal biographical information and a description of their research interests.


Lucile L Adams-Campbell

Professor, Oncology
Associate Dean of Community, Health and Outreach
Dr. Adams-Campbell's website
Lla9@georgetown.edu
202-687-5367
Office: 1000 New Jersey Ave., SE Washington DC 20003
Education: Ph.D. (Epidemiology), University of Pittsburgh
Current Research: I am the Associate Director of Minority Health and Health Disparities Research at Lombardi Cancer Center and Associate Dean of Community Health and Outreach at Georgetown University Medical Center Lombardi Comprehensive Cancer Center. I am an epidemiologist who specializes in community and population based research, behavioral interventions, and prevention clinical trials. I am a member of the Institute of Medicine of the National Academies. My research is primarily in the area of breast cancer prevention and control and women’s health with emphasis on energy balance, diet and exercise. I am also involved in the establishment of the University-Wide Initiative to Reduce Health Disparities Initiative and serve as Co-Chair.

Christopher Albanese

Professor, Oncology
Dr. Albanese's website
albanese@georgetown.edu
202-687-3305
Office: GD-10 Pre-Clinical Science Building
Lab: Pre-Clinical Science Building
Education: Ph.D. (Biology) Cardiff University, Wales UK.
Current Research: Dr Albanese’s research program is focused on better understanding of the roles of oncogenes, tumor suppressors and cell cycle regulatory proteins in the initiation and progression of genitourinary and other cancers. He has an extensive background both in animal modeling and in molecular biology and has been directly involved with the testing of new compounds for inhibiting tumorigenesis. He is also investigating the mechanisms by which chemotherapeutic compounds signal through p53 to induce cell death. He is the originator and director of the Preclinical Imaging Research Laboratory, a comprehensive preclinical imaging suite based on MRI, luminescence/fluorescence IVIS imaging, and ultrasound imaging of models of human diseases. He is also directly involved using and refining conditionally reprogrammed mammalian epithelial cell (CRC) culture methods for high impact research, development and clinical applications. His goal is to enable the development of bedside to bench to bedside translational programs in cancer biology, imaging and precision therapy.

Maria Laura Avantaggiati

Associate Professor, Oncology
Dr. Avantaggiati's website
ma364@georgetown.edu
202-687-9199
Office: W305 New Research Bldg
Lab: W305 New Research Bldg
Education:M.D./Ph.D. University of Rome, La Sapienza, Italy
Current Research: Our research focuses on the mechanisms of action of the p53 gene product, which plays a key role in cellular transformation, aging, senescence as well as in determining the outcome of chemo- and radio-therapy. The p53 gene is also mutated in the majority of cancers and these p53 mutant proteins acquire different functional properties relative to the wild-type protein. While wild-type p53 poses a barrier to the emergence and proliferation of cancerous cells, p53 mutants favor tumor initiation, progression and metastasis. We are using animal models, as well as genetic and pharmacologic tools, to tackle the mechanisms by which wild-type and mutant p53 exert these activities and to identify the essential components of the p53 pathway that can be exploited to manipulate the decision making process of cells between life and death. The ultimate scope of our studies is to better understand how cancer develops and to discover new ways to eliminate tumor cells.

Milton Brown

Associate Professor, Oncology
Dr. Brown's website
mb544@georgetown.edu
202-687-8605
Office: EP07 New Research Building
Lab: WP22 New Research Building
Education:Ph.D. (Chemistry), University of Alabama at Birmingham, M.D., University of Virginia
Current Research: Milton Brown, M.D., Ph.D., is expert in the development of lifesaving new drugs in the fields of cancer and neuroscience. The drug discovery program (DDP) Brown leads supports more than 20 investigators in drug discovery and development. Brown has positioned the DDP at the interface of chemistry and medicine to help facilitate the translation of basic science into new medical therapies. He has taken more than a dozen projects from concept through preclinical studies in several therapeutic areas. Brown’s laboratory is equipped to design and synthesize new compounds, evaluate the compounds against targeted proteins and human cancer cell lines, assess the maximal tolerated dose and evaluate candidate compounds in laboratory models. Under Dr. Brown’s leadership, the DDP was selected as a Chemical Diversity Center in the National Cancer Institute’s Chemical Biology Program.

Stephen Byers

Professor, Oncology
Director for Shared Resources
Dr. Byers's website
Byerss@georgetown.edu
202-687-1813
Office:E415A New Research Building
Lab:E415 New Research Building
Education: B.Sc Liverpool University, UK (Chemistry/Biology), Ph.D. University of Queensland, Australia (Endocrinology)
Current Research: Professor Byers, an Associate Director at Lombardi, was educated in the UK and Australia where he was a Ford Foundation Scholar. He came to the US as a Rockefeller Foundation Fellow. Dr. Byers has authored >150 papers and patents in the areas of, cell adhesion, chemoprevention and the development of anti-cancer drugs. He co-discovered the role of Matrigel in promoting differentiation and developed the first examples of commercial dual environment culture chambers. His group went on to demonstrate the role of cadherins and ß-catenin in promoting epithelial-mesenchymal transitions, discovered the role of phosphorylation in degradation and ubiquitination of ß-catenin and was the first to show the interaction of the vitamin A and D pathways with ß-catenin signaling. Recently his laboratory has focused on the computational repositioning of existing FDA-approved drugs for alternative targets and metabolomic profiling of serum and urine as a means of predicting cancer patient outcome.

Fung-Lung Chung

Professor, Oncology
Dr. Chung's website
flc6@georgetown.edu
202-687-3021
Office: E215A New Research Building
Lab: E215 New Research Building
Education:Ph.D. (Medicinal Chemistry), University of Utah
Current Research: Dr. Chung is a tenured professor in Oncology. He also has an appointment in the Department of Biochemistry and Molecular & Cellular Biology. His main research focuses on two areas: one is mechanism of chemical carcinogenesis and the other is cancer chemoprevention. Currently, his lab is using state-of-the-art chemical and biological approaches to study mutations and apoptosis caused by DNA damages arisen from peroxidation of lipids, particularly ω-3 and ω-6 polyunsaturated fatty acids, and investigate their roles in the development of cancers of the lung, liver and colon. In cancer prevention, his lab has discovered certain natural products in plants that possess activities to inhibit carcinogenesis and research is conducted to elucidate the mechanisms of these agents by identifying their molecular targets. For example, his group has recently reported that tubulin and mutant p53 are the potential targets of phenethyl isothiocyanates, a bioactive compound rich in watercress. In addition to these projects, Dr. Chung is actively involved in translating the findings in the lab to human setting by working with clinicians by conducting clinical trials to study the prevention of cancers in heavy smokers by tea as well as using watercress juice.

Robert Clarke

Professor, Oncology
Dean of Research
Dr. Clarke's website
Clarkr@georgetown.edu
202-687-9364
Office: NW105 Med.Dent. Building
Lab: W405 New Research Building
Education:Ph.D. (Biochemistry), D.Sc. (Biochemistry) The Queen's University Belfast, UK
Current Research:The work in our laboratory takes a primarily systems biology approach to understanding how breast cancers respond to systemic therapies, with a focus on hormonal and antihormonal interventions and the acquisition of drug resistance. Our translational and interdisciplinary studies use cell lines, animal models, and human specimens, to which we apply state-of-the art cellular and molecular biology techniques. Working closely with our colleagues, we also use biostatistics, bioinformatics, and mathematics to analyze and computationally model our data and to test our central hypotheses. Our current focus is perhaps most easily accessed in two recent reviews (Nature Reviews Cancer, 11: 523-532, 2011; Cancer Research, 72:1321-1331, 2012); we have multiple ongoing research projects and collaborations in these areas. Our team has a long track record of successfully training undergraduate and graduate students, and mentoring postdoctoral fellows and junior faculty, most of whom were supported by training grants they were successfully awarded during their time with us. Research in the laboratory has been consistently supported by federally funded awards for over 20 years.

Elliott Crooke

Professor, Department of Biochemistry & Molecular & Cellular Biology
Chair of Biochemistry & Molecular Biology
Senior Associate Dean of Faculty & Academic Affairs
Dr. Crooke's website
crooke@georgetown.edu
202-687-1644
Office: 339 Basic Science Building
Lab: Basic Science Building
Education:Ph.D. (Biological Chemistry), University of California, L.A.
Current Research: Dr. Crooke, Professor and Chair of the Department of Biochemistry and Molecular & Cellular Biology, studies two areas of cellular biology. One is to determine molecular mechanisms that cells employ to assure that their genome is faithfully replicated once, and only once, per cell cycle. Loss of such mechanisms is one of the hallmarks of the onset of carcinogenesis. The second project in Dr. Crooke's laboratory focuses on understanding the physiological role that cellular polyphosphates play in how cells respond to environmental stresses. These long, energy-rich polymers are found found in virtually all organisms. Disruption of the gene that encodes the polyphosphate biosynthetic enzyme, polyphosphate kinase (PPK), gives rise to cells that have decreased viability following exposure to environmental challenges such as heat, UV-irradiation and oxidativestress, or when the cells are maintained in the stationary phase for prolonged periods. Certain mutations elsewhere in the genome have the ability to suppress the sensitivities that ppk knock-out cells have toward these environmental stresses. Identification of the genes that harbor such mutations will help us understand in which signal transduction and stress response pathways polyphosphates participate.

Albert Fornace

Professor, Biochemistry & Molecular & Cellular Biology, Oncology
Dr. Fornace's website
af294@georgetown.edu
202-687-7843
Office: E505A New Research Building
Lab: E505 New Research Building
Education:M.D. Jefferson Medical College
Current Research: There are currently several areas of active research in the laboratory. In regards to cancer research, a major effort is to understand the effects of radiation, particularly space radiation, on development of gastrointestinal cancer. Much of these studies are supported by a NASA Specialized Center of Research (NSCOR) led by Dr. Fornace. The effect of estrogen mimics (endocrine disruptors) are being studied with a systems biology approach in a multi-institutional program supported by NIEHS; this and related studies have relevance to breast cancer. An ongoing area of interest is the roles for p38 MAP kinase signaling after stresses such as ionizing radiation and ultraviolet radiation. This includes studies on the Wip1 phosphatase which can function as an oncogene by blocking a variety of tumor suppressor pathways including p53, p38 MAP kinase, ATM, and others. Wip1 studies include its roles in gastrointestinal and skin cancer. Another general area of research is the use of metabolomics and other systems approaches to assess the injury responses to stresses such as ionizing radiation and chemical agents. With support from the NIAID Centers for Medical Countermeasures Against Radiation (CMCR), our laboratory is part of a multi-institutional program to develop biomarkers for radiation exposures, such as would occur during a radiologic and nuclear event

Priscilla A Furth

Professor, Oncology & Medicine
Dr. Furth's website
PA.Furth@georgetown.edu
202-687-8986
Office: E520A Research Bldg
Lab: E520 Research Bldg
Education: M.D. Yale University, New Haven, CT
Current Research: Research in the Furth Lab focuses on cancer genetics and pathophysiology. One current project examines the possibility of finding genetic signatures linked to an elevated risk of exhibiting tamoxifen resistance in breast preneoplasia. A second project investigates fusion genes and associated genetic changes in salivary gland benign neoplasms and cancer. A combination of genetically engineered mouse models and primary human tissue are used in combination with state-of-the-art tissue culture technology, NextGen sequencing and investigative and standard pathological and molecular techniques to identify and test candidate genetic signatures for the first project. For the second state-of-the-art tissue culture technologies are utilized along with NextGen sequencing, and investigative and standard pathological and molecular techniques to examine impact of genetic changes. Funding provided by NCI, NIDCR, NIH with support from institutional Shared Resources HTSR, ASR, and GESR. Faculty collaborators include breast and head and neck surgeons, pathologists, cell biologists, molecular biologists and bioinformaticians.

Robert I Glazer

Professor, Oncology
Dr. Glazer's website
glazerr@georgetown.edu
202-687-8324
Office: New Research Building W318
Lab: New Research Building W317, W321, W324
Education: Ph.D. (Pharmacology) Indiana University
Current Research: Over the past 10 years, we have investigated the role of the PPAR family of nuclear receptors in tumorigenesis using transgenic and knockout mice, as well as the functional roles of stem cell genes, such as Musashi1 (Msi1) and stem cell antigen-1 (Sca-1/Ly6A). We discovered that Msi1 controlled the Wnt and Notch pathways in mammary epithelial cells (Wang et al., MCB, 2008), and that it was highly expressed in breast cancer cell lines and primary tumors (Wang et al., Mol. Cancer, 2110). Through the use of Sca-1 deficient mice and RNA interference, we showed that Sca-1 was a major factor in repressing the tumor suppressor genes TGF-β, PTEN and PPARγ (Upadhyay et al., PNAS, 2011; Yuan et al., Cancer Prev. Res., 2012). We have been instrumental in developing several transgenic animal models of breast cancer, including dominant-negative PPARγ mice that established the suppressor role of PPARγ on mammary stem and progenitor cell expansion and ER+ tumor development (Yin et al., Cancer Res., 2009). More recently, we produced the first mouse model of luminal B breast cancer due to overexpression of PPARδ (Yuan et al., Cancer Res., 2013). This model also led to the unexpected discovery that the placental gene, Plac1, which is not expressed in most somatic tissues, was highly elevated at the onset of and throughout tumorigenesis. We are currently investigating whether a recombinant adeno-associated virus-1 (AAV1) vaccine targeting Plac1 can activate an adaptive immune response and block tumor formation in two spontaneous mouse models of breast cancer.

Radoslav (Rado) Goldman

Associate Professor, Oncology, Biochemistry & Molecular & Cellular Biology
Dr. Goldman's website
rg26@georgetown.edu
202-687-9868
Office: E207A New Research Building
Lab: E207 New Research Building, GD9 Preclinical Science Building
Education:Ph.D. (Toxicology), University of Pittsburgh
Current Research:Translational studies that combine cancer biology with the development of quantitative mass spectrometric methods. The goal is early diagnosis of cancer, improved disease classification, understanding of carcinogenic mechanisms, and targeted therapy. We focus on mass spectrometric analysis of glycopeptides with the aim to determine their functions in the progression of infectious diseases to cancer. Applications include studies of liver, head&neck, and prostate cancers using a growing repository of human samples and relevant model systems. Special interest in glycoprotein evolution, structure, and function. Current research funded by NIH and DOD.

Leena A Hilakivi-Clarke

Professor, Oncology
Dr. Hilakivi-Clarke's website
clarkel@georgetown.edu
202-687-7237
Office: E405A New Research Building
Lab: E405 Research Building
Education:Ph.D. University of Helsinki, Finland
Current Research: Research done in Hilakivi-Clarke lab focuses on nutrition and breast cancer. There are currently the following projects being performed: (1) maternal exposure to a high fat diet during pregnancy and transgenerational inheritance of increased breast cancer risk, (2) maternal exposure to synthetic environmental estrogens during pregnancy and resistance to endocrine therapy among female offspring, (3) effects of dietary intake of isoflavones in soy foods on breast cancer survival, (4) social isolation stress, obesity and breast cancer, and (5) role of vitamin D in preventing obesity-induced increase in breast cancer risk and resistance to endocrine therapy. In the first two projects, we are focusing on studying epigenetic mechanisms, especially DNA methylation, polycombs and miRNAs in germ cells, mammary tissues and tumors. This work also intersects with a project by Dr. Sonia de Assis to study paternal obesity and breast cancer risk among daughters. The other three projects investigate the effects of dietary exposures and obesity on unfolded protein response and pro-survival autophagy in affecting response to endocrine therapy. This work is performed in collaboration with Dr. Robert Clarke and Dr. Katherine Cook. We also utilize conditionally reprogrammed cell technique and systems biology approaches to identify treatment targets in mammary tumors to prevent endocrine resistance and recurrence of estrogen receptor positive breast cancer.

Carolyn Hurley

Professor, Oncology and Microbiology & Immunology
Dr. Hurley's website
hurleyc@georgetown.edu
202-687-2157
Offices: E404A New Research Building; 11333 Woodglen, Rockville, MD
Lab: E404 New Research Building
Education: Ph.D. (Genetics) University Wisconsin, Madison
Current Research: Major histocompatibility (MHC) molecules present peptide antigen to T lymphocytes. The absence of MHC molecules on the surface of infected or malignant cells is detected by natural killer cells. My laboratory is interested in the interaction between MHC and natural killer cell receptors called KIR. On the clinical side, the extensive diversity of MHC alleles protects us from infection but is a barrier to the transplantation of hematopoietic progenitor cells (HPC, e.g., bone marrow) for patients with fatal blood diseases. I am interested in the role that MHC plays in the selection of unrelated donors, the methods used to identify MHC diversity, and the algorithms used by HPC registries to identify suitable donors.

Michael D Johnson

Associate Professor, Oncology
Dr. Johnson's website
johnsom@georgetown.edu
202-687-0217
Office: W416 New Research Building
Lab: W412, W422 New Research Building
Education:Ph.D. (Pathology) Newcastle University, U.K.
Current Research: Dr Johnson has been working in the field of breast cancer research for more than twenty five years, studying the role of survival signaling in mammary carcinogenesis, the role of a variety of proteases in breast cancer progression, invasion, and metastasis, and various aspects of estrogen dependence and antiestrogen resistance in the treatment of estrogen receptor positive breast cancer. More recently his work on the serine protease matriptase and its inhibitor HAI-1 has lead to research on the role of this protease-inhibitor system in normal skin biology, epidermal differentiation, and carcinogenesis, its role in epithelial differentiation, and its contribution to the carcinogenesis and malignant progression in the breast and hematologic malignancies.

Usha N Kasid

Professor, Oncology & Biochemistry & Molecular & Cellular Biology
Dr. Kasid's website
kasidu@georgetown.edu
202-687-2226
Office: W326 New Research Bldg
Lab:Building D
Education:Ph.D. Punjab University, India
Current Research:Usha N. Kasid, PhD, is a Professor of Radiation Medicine and Biochemistry and Molecular & Cellular Biology; Molecular Oncology, Lombardi Comprehensive Cancer Center. She received her Ph.D. from Punjab University in India, and her post-doctoral training as a Fogarty Fellow in the Laboratory of Biochemistry at the National Cancer Institute, NIH. Dr. Kasid’s research interests in the areas of cancer biology and developmental therapeutics include: Raf-1/Erk signaling; integrins; tumor growth and metastasis; mitochondrial pathway of cell death; ER stress response; radiation resistance and chemoresistance; systemic delivery of antisense and siRNA containing liposomal nanoparticles; breast, prostate and pancreatic cancers.

Joanna Kitlinska

Associate Professor, Biochemistry and Molecular and Cellular Biology
Dr. Kitlinska' website
jbk4@georgetown.edu
202-687-5229
Office: 231A Basic Science Building
Lab:234 Basic Science Building
Education:Ph.D. Medical University of Lublin, Poland
Current Research:Research in Dr. Kitlinska’s laboratory focuses on role of a sympathetic neurotransmitter, neuropeptide Y (NPY) in tumor biology. NPY is normally released from the activated sympathetic neurons, e.g. during stress. However, the tumors with neuronal features, such as two pediatric malignancies, neuroblastoma and Ewing’s sarcoma, may also synthesize and release this peptide. We have found that NPY is not only a marker of neuronal differentiation of these tumors, but also an active regulator of their growth and vascularization. Currently, we are exploring the role of NPY in metastases of these tumors, as well as assessing NPY and its receptors as targets in their therapy. Since NPY is highly up-regulated during chronic stress, our findings on its important role in regulation of tumor growth and dissemination triggered our interest in impact of stress on cancer progression and development. At present, we are investigating the effect of prenatal stress on development of neuroblastoma – a childhood tumor arising due to defects in sympathetic neuron differentiation.

Christopher Loffredo

Professor, Oncology & Biostatistics
Dr. Loffredo's website
cal9@georgetown.edu
202-687-3758
Office: W503 New Research Building
Education:Ph.D. (Toxicology) University of Maryland, Baltimore
Current Research:Dr. Christopher Loffredo co-leads the Cancer Prevention and Control Program of the Lombardi Comprehensive Cancer Center. He teaches graduate school courses in epidemiology and biostatistics. Dr. Loffredo is an internationally known researcher in the fields of cancer and birth defects. His research focuses on environmental and genetic causes of these diseases, and especially on the roles that genetics play in mediating the risks from environmental chemical exposures. His research projects span liver, bladder, and lung cancer in relation to chronic infections such as hepatitis C virus, and environmental factors such as smoking and pesticides. He has directed collaborative research in Egypt for the past 15 years and is also the principal investigator of a project with Russian scientists related to ionizing radiation exposure and its long term cancer risks. At Georgetown he leads a group focused on developing biomarkers for the early detection of liver cancer in high risk patients.

Mary Beth Martin

Professor, Oncology
Dr. Martin's website
MaryBeth.Martin@georgetown.edu
202-687-3768
Office:E411A New Research Building
Lab:E411 New Research Building
Education:Ph.D. (Biochemistry) University of Medicine & Dentistry of New Jersey
Current Research: Dr. Martin’s primary research interest is in the role of steroid receptors in breast cancer and focuses on the mechanisms that regulate expression and activity of the receptors. Her initial work in the field showed that estradiol and growth factors regulate the expression of estrogen receptor-alpha (ERa) through several mechanisms including regulation of transcription of the ERa gene, stability of the ERa transcript, and translation of ERa mRNA. In addition to defining the mechanisms that regulate expression, her laboratory is interested in defining the mechanisms that regulate ERa activity. The laboratory was the first to show that growth factors activate ERa through the AKT pathway and was the first to show that metals/metalloids activate ERa by binding to the ligand binding domain. The Martin laboratory is currently interested in defining the role of metals/metalloids in the etiology and progression of breast cancer and the molecular mechanism by which metals/metalloids activate ERa.

Vicente Notario

Professor, Radiation Medicine, and Biochemistry and Molecular & Cellular Biology
Dr. Notario's website
notariov@georgetown.edu
202-687-2102
Office:E208A New Research Building
Lab:E208 New Research Building
Education:Ph.D. (Biology) University of Salamanca, Spain
Current Research: Dr. Notario's research group focuses on studies of molecular mechanisms of oncogenesis that involves the investigation of the effects of environmental chemical carcinogens and radiation on mammalian cells with regard to the expression and activity of cancer genes and their protein products. The central objective is to understand the molecular and cellular basis for cancer initiation and progression as well as mechanisms involved in the acquisition of resistance to anti-cancer therapy, with emphasis on pathways that may be exploited to improve the treatment of metastatic cancers and to sensitize human tumors to chemotherapeutic drugs and radiation therapies. Ongoing studies are centered on establishing the role of the mt-PCPH oncoprotein, previously discovered in the Notario laboratory, as a driver of the malignant phenotype of human prostate and colorectal tumors, particularly on its involvement in the regulation of cancer cell invasiveness and the onset of therapeutic resistance. In addition, the Notario laboratory studies molecular targets and pathways that may enhance the sensitivity to radiotherapy of Ewing’s sarcoma, a very aggressive type bone tumors that predominantly affect children and young adults. Related areas of research explore the anti-tumorigenic activity of the PEDF protein using various experimental systems for experimental carcinogenesis as well as the possible anti-cancer actions of human dietary components. Dr. Notario has authored over 140 publications and has been continuously funded by the U.S. National Cancer Institute since 1986.

Habtom Ressom

Professor, Oncology
Dr. Ressom's website
hwr@georgetown.edu
202-687-2283
Office: 175 Building D
Lab:173 Building D and W325 New Research Building
Education:Ph.D. University of Kaiserslautern, Germany
Current Research:Dr. Ressom is interested in using multi-omic approaches for cancer biomarker discovery and systems biology research. The computational group in his laboratory develops workflows for large-scale omic studies, statistical and machine learning methods for analysis of mass spectrometric data, and algorithms for biological network inference from multiple data sources. His wet laboratory applies high-throughput omic technologies for identification and quantification of biomolecules in human biospecimens. Current research in Ressom Lab focuses on analysis of liver tissues and blood samples by mass spectrometry-based multi-omic techniques (metabolomics, proteomics, glycomics, and glycoproteomics) to find biomarkers for hepatocellular carcinoma and to investigate aberrant pathways and network activities.

Anna Tate Riegel

Professor, Oncology & Pharmacology
Dr. Riegel's website
Dr. Riegel's profile
ariege01@georgetown.edu
202-687-4821
Office:E307A New Research Building
Lab:E307 New Research Building
Education:Ph.D. (Oncology) University of Wisconsin, McArdle Lab
Current Research: Dr Riegel’s research is focused on the role and regulation of nuclear receptor coactivators in cancer progression. The long-term goal of her research is to understand the signals that enhance tumor cell / stromal interactions with a focus on breast cancer and ultimately to determine ways that this cross talk could be interrupted therapeutically. Her laboratory was the first to report the potentiation by the coactivator oncogene AIB1 of the oncogene HER2 and also the activity of a variant isoform of AIB1 in breast cancer. These studies utilized xeno and allograft models, transgenic and conditional knockout mouse models of breast cancer as well as 3D models of cancer progression. Recent work has examined the role of coactivators in maintenance of cancer stem cells and is focused on determining how stem cell cross talk with components of the tumor stroma influences breast cancer progression.

Rebecca Riggins

Assistant Professor, Oncology
Dr. Riggins' website
rbr7@georgetown.edu
202-687-1260
Office: E412A New Research Building
Lab:E412 New Research Building
Education:Ph.D. (Microbiology) University of Virginia
Current Research: My laboratory’s research is focused on understanding how estrogen-related receptors (specifically ERRbeta and ERRgamma) function in cancer. We were the first to demonstrate that estrogen-related receptor gamma (ERRgamma), an orphan nuclear receptor with broad similarity to classical estrogen receptor alpha (ERα), plays a key functional role in the acquisition of Tamoxifen resistance in ER+ breast cancer and is a substrate for ERK/MAPK. Newer studies in my lab focus on identifying the mechanism(s) by which DY131, a synthetic agonist of ERRbeta/gamma, induces cell cycle arrest and death in models of brain and triple negative breast cancer. In conjunction with classical wet-lab studies, I have also been actively involved with the development of several bioinformatics tools, including the Georgetown Database of Cancer (G-DOC), which my informatics colleagues and I used in a recent publication that identified essential mitosis regulatory networks associated with early distant metastasis in ER+ breast cancer.

Eliot M Rosen

Professor, Oncology
Dr. Rosen's website
emr36@georgetown.edu
202-687-7695
Office: Preclinical Science Building
Lab: GD-03 Preclinical Science Building
Education:M.D., Ph.D. (Physiology) University of Pennsylvania
Current Research: Dr. Rosen is an experienced cell and molecular biologist. His major areas of interest include the molecular function of the breast cancer susceptibility gene-1 (BRCA1) in DNA repair pathways; the role of BRCA1 in regulating the activity of several nuclear receptors (including the estrogen and progesterone receptors); its role in cancer chemoprevention; and signal transuction pathways of scatter factor (hepatocyte growth factor) and its receptor c-Met that leads leads to protection against apoptosis and chemo/radioresistance of tumors. These studies have relevance to breast cancer, prostate cancer, and primary brain tumors (gliomas and glioblastomas).

Rabindra Roy

Associate Professor, Oncology
Dr. Roy's website
rr228@georgetown.edu
202-687-7390
Office: LF09A, Pre-Clinical Science Building
Lab: LF05, Pre-Clinical Science Building
Education: PhD (Biochemistry) Indian Institute of Chemical Biology, India
Current Research: The research themes in my group is centered on the mechanism studies of canonical and non-canonical functions of Base Excision Repair (BER), a major DNA repair pathway, in various cancers. Cellular inflammatory conditions, cigarette smoke and environmental pollutants induce DNA damage and cause mutations and genome instability, an important ‘enabling’ hallmark of cancer cells. We focused on canonical role of BER genes in repairing those DNA lesions and how this prevents mutations and cancer. Chemotherapeutic drugs currently account for a large portion of anti-cancer therapy, and a significant fraction of these drugs function mechanistically through inducing cytotoxic DNA damage. While multiple mechanisms of drug resistance exist, processing and repair of drug-induced toxic DNA damage by BER proteins is a major source of chemotherapy resistance. We also focused on identifying small molecule inhibitors of BER proteins for chemosensitization of resistant cancer cells. Our recent findings of potential cross-talk between BER genes and growth factor signaling pathways revealed a novel non-canonical function of BER genes. Understanding this new role of BER genes will lead to potential targets that are amenable to therapeutic intervention. Our studies feature a combination of cellular, molecular, biochemical and biophysical approaches.

C. Richard Schlegel

Professor, Pathology
Chairman, Department of Pathology
Director, Center for Cell Reprogramming
Dr. Schlegel's website
The Center for Cell Reprogramming website
The Center for Cell Reprogramming Facebook page
Richard.Schlegel@georgetown.edu
202-687-1655
Office:W500 New Research Building
Lab:GR-10C Preclinical Science Building
Education:M.D., Ph.D. (Microbiology) Northwestern University
Current Research:Richard Schlegel, MD, PhD, is the Oscar B. Hunter Chair of Pathology and an expert in human papillomaviruses (HPV) and cervical cancer. Dr. Schlegel received his MD and PhD degrees from Northwestern University Medical School, and was a resident and post-doctoral fellow at Harvard Medical School (Brigham Hospital) in the fields of Pathology and Virology. He moved to the National Institutes of Health in 1980 where he continued his viral oncology studies and became the Chief of the Cell Regulation Section in the Laboratory of Tumor Virus Biology. In 1990 he moved from NIH to Georgetown University Medical Center to join forces with immunology and pathology experts who were researching the connection between cervical cancer and HPV. His laboratory used molecular and cell biology assays to define the genes required for HPV-mediated cell immortalization and he co-developed the technology for the vaccine against human papillomavirus (HPV). HPV causes nearly all cervical cancers and contributes to many other human cancers including those of anal, oral and skin origin. On June 8, 2006 the Food and Drug Administration approved the vaccine, called Gardasil, and recommended it for women between the ages of nine and 26. The CDC and pediatric medical associations now recommend it for boys as well as girls. He has published more than 150 papers on viral oncology, served on the editorial board of the journal Virology, has been a permanent member of the NIH Virology study section, and is now a member of the College of CSR Reviewers. In addition, Dr. Schlegel has received Georgetown’s Presidents Award, Vicennial Award, and Patrick Healy Award and has patented several technologies related to HPV diagnostics and prevention. Today, Dr. Schlegel’s laboratory is focused on a new cell biology technique that his laboratory developed which allows the rapid establishment of normal and tumor cell cultures from cancer patients. This technology, termed conditional reprogramming, has multiple applications for basic science and medicine. The technology has spawned a new biotechnology company, Propagenix, which will focus on diagnostic and regenerative medicine applications.

Ayesha Shajahan-Haq

Assistant Professor, Oncology
Dr. Shajahan-Haq's website
ans33@georgetown.edu
202-687-7451
Office:E404B New Research Building
Lab:E404 New Research Building
Education:Ph.D. (Pharmacology) University of Illinois at Chicago
Current Research:Dr. Shajahan-Haq’s research focus is on understanding the reprogramming of signaling and metabolic pathways associated with drug resistance in breast cancer. In her currently funded projects, she is investigating the role of glutamine metabolism in estrogen receptor positive breast cancer, and whether there are disparities in how breast cancer cells respond to drugs based on race of the patient. Also, she has collaborative multi-disciplinary projects with math modelers and computational biologists to understand how the complex cancer systems respond and change with therapy and how to optimize treatment regimens.
Dr. Shajahan-Haq is also Scientific Advisor to the Georgetown Lombardi Breast Cancer Patient Advocacy Committee.

Jill P. Smith

Professor, Medicine
Dr. Smith's website
jps261@georgetown.edu
202-444-3646 (Office) 202-687-2020 (Lab)
Office:Room 2408 Main Building
Lab:Room 338 Building D
Education:M.D. University of Florida, Gainesville
Current Research:Dr. Smith is a clinician scientist involved in translational research of pancreatic cancer. Her research focuses on the role of the gastrointestinal peptides gastrin and CCK on growth of pancreatic cancer and the receptors through which they mediate their response: the Cholecystokinin- B receptor. Dr. Smith is involved in studying the role of dietary fat and cancer. Her lab discovered a novel mutant receptor called the CCK-C receptor that is the result of a SNP present in 35% of those with pancreatic cancer. Research efforts are also exploring the mechanisms of cell signaling mediated via this unique receptor. Dr. Smith's studies also involved correlation and translation to studies in human subjects with precancerous conditions (chronic pancreatitis).

Jeffery A Toretsky

Professor, Oncology
Dr. Toretsky's website
jat42@georgetown.edu
202-687-8655
Office: W311 New Research Building
Lab:E316 New Research Building
Education:M.D. University of Minnesota
Current Research:Dr. Jeffrey Toretsky has been studying Ewings sarcoma since 1992. His early work investigated minimal residual disease, antisense oligonucleotide growth inhibition, and novel EWS-FLI1 targets and protein interactions. The Toretsky laboratory continues to focus on Ewing sarcoma, since the tumors contain a unique target, EWS-FLI1, which is not found in non-tumor cells. We created the first small molecule to directly target EWS-FLI1, YK-4-279, which is a useful laboratory probe and advancing to clinical trials. In addition to Ewing sarcoma, YK-4-279 appears to target other malignancies with amplified FLI1 including glioblastoma (GBM). Thus, investigating the comparative mechanism of YK-4-279 is ongoing.
The oncologic process set in motion by EWS-FLI1 remains relatively cryptic despite the identification of many transcriptional targets. Projects that elucidate these mechanisms include investigation of alternative splicing, helicase regulation, and histone alterations that modify chromatin access by transcription factors. Active collaborations include physicists, chemists, and informaticians to answer questions in a multidisciplinary fashion.

Aykut Uren

Associate Professor, Oncology
Dr. Üren's website
au26@georgetown.edu
202-687-9504
Office: E312, New Research Building
Lab: E316 New Research Bldg
Education: M.D. Hacettepe University School of Medicine in Ankara, Turkey
Current Research: Dr Üren's lab investigates molecular mechanisms involved in cancer metastasis including ezrin in osteosarcoma and ERG in prostate cancer. The main goal of the research program is to develop small molecules that can target specific protein-protein interactions containing ezrin or ERG. Normal functions of these proteins and biological significance of inhibiting them are studies at the biochemical and cellular level with in vitro assays. Promising compounds are further validated on in vivo cancer models. Dr. Üren also runs the Biacore Molecular Interactions Shared resource, which performs surface plasmon resonance experiments as a service to Georgetown University and other academic institutions.

Todd A Waldman

Professor, Oncology
Dr. Waldman's website
waldman@georgetown.edu
202-687-1340
Office:E304A New Research Building
Lab:E304 New Research Building
Education:M.D., Ph.D. (Human Genetics) Johns Hopkins School of Medicine
Current Research:We are interested in the discovery, functional analysis, and therapeutic targeting of tumor suppressor genes in glioblastoma multiforme (GBM), which is the most common and deadly primary tumor of the brain. Over the past five years we have identified a number of new GBM tumor suppressor genes, including STAG2, p18INK4c, and PTPRD. In addition to identifying new GBM tumor suppressors, we use a variety of advanced techniques in somatic cell genetics such as human somatic cell gene targeting to study the role of the PTEN tumor suppressor in the pathogenesis of GBM. We are also working together with our close collaborator David James at UCSF to evaluate the potential efficacy of cdk4/6 inhibition as a therapeutic strategy for GBM. Please follow the links above for information on our specific research interests, people in the lab, and our recent publications.

Louis M Weiner

Professor, Oncology
Director, Lombardi Comprehensive Cancer Center
Dr. Weiner's website
weinerl@georgetown.edu
202-687-2110
Office:E501 New Research Building
Lab:W322 New Research Building
Education:M.D. Mount Sinai School of Medicine
Current Research:Louis M. Weiner, MD, director of Georgetown Lombardi Comprehensive Cancer Center, is an internationally recognized medical oncologist. Dr. Weiner is expert on clinical cancer treatment, particularly in treating gastrointestinal cancers. During his career-long cancer immunology scientific laboratory research, Dr. Weiner has focused on new therapeutic approaches that galvanize a patient’s own immune system to fight cancer using monoclonal antibodies ─ laboratory—crafted proteins designed to recognize specific cancer cells. He has designed and produced antibody-based proteins with improved tumor-targeting and immune-stimulating properties that have shown tumor targeting is impaired if the antibodies attach too tightly to their targets. Monoclonal antibody therapy has emerged as a major treatment for many common cancers, including breast cancer, colon cancer, lymphoma, chronic lymphocytic leukemia and cancers of the head and neck.

Anton Wellstein

Professor, Oncology, Pharmacology & Medicine
Dr. Wellstein's website
Dr. Wellstein's profile
Anton.Wellstein@georgetown.edu
202-687-3672
Office: E311A, New Research Bldg
Lab:E311 New Research Building
Education: M.D./Ph.D. (Clin. Chemistry/Pathology) J.Gutenberg-University, Mainz/Germany
Current Research: Dr. Wellstein trained as an MD & PhD (Pharmacology) in Germany and then on a sabbatical at NCI/NIH to study growth factor signaling in breast cancer in Marc E Lippman’s lab. He was then recruited to the faculty of Georgetown University in the Departments of Pharmacology and Oncology, where he is a tenured Professor. His lab discovered that the receptor for the growth factor pleiotrophin is ALK (anaplastic lymphoma kinase) and defined the role of secreted binding proteins for FGF (FGFBPs) in cancer, physiology and development. Dr. Wellstein’s work is focused on tumor / stromal interaction with a particular emphasis on the activity of FGFs and the pleiotrophin/ALK signaling pathways. His major interest is in mechanisms of cancer invasion and metastasis. His laboratory studies cellular, molecular and biochemical signal transduction mechanisms in vitro as well as in tumors, transgenic and knockout animal models and clinical samples. Published >170 papers.

Chunling Yi

Assistant Professor, Oncology
Dr. Yi's website
CY232@georgetown.edu
202-687-8484
Office: E301A New Research Building
Lab: E301 New Research Building
Education: Ph.D. (Mol. Cell. & Dev. Biology) Yale University New Haven, C.T.
Current Research: My lab is interested in understanding how cancer cells rewire their signaling network to evade growth suppression and translating this knowledge to effective cancer treatment strategies. We employ a diverse set of molecular, cellular, genomic, biochemical and mouse genetic tools to tackle these complex yet important questions. Currently, we are focusing on dissecting the signal circuitry surrounding the Hippo-Yap pathway and its implications in cancer initiation, progression and drug resistance. The Hippo-Yap pathway has emerged in recent years as a central cancer pathway that underlies many types of common and rare human cancers. My lab is actively investigating the roles of the Hippo-Yap pathway in pancreatic, lung, liver and kidney cancers as well as a rare genetic disorder – Neurofibromatosis Type 2 (NF2). Simultaneously, we are working on developing novel Yap small molecular inhibitors, which we hope to one day can be used to treat diseases involving deregulation of Hippo-Yap signaling.

Supporting Faculty

Luciane Cavalli

Assistant Professor, Oncology
Dr. Cavalli's website
lrc@georgetown.edu
202-687-2029 (Office) 202-687-4121 (Lab)
Office:E525A New Research Building
Lab:E525 New Research Building
Education:PhD (Tumor Biology) Georgetown University
Current Research:The main research interest of our lab is the study of genomic instability in breast cancer, through the identification and characterization of the genetic alterations involved in the onset and progression of these tumors. Currently we are focusing on projects that aim to characterize the genomic and transcriptome profile of triple negative breast tumors (TNBC), a clinically and molecularly heterogeneous breast cancer subtype. These tumors are characterized by an aggressive tumor cell behavior that confers disease recurrence, treatment resistance and high mortality. Lack of effective biomarkers and molecular targets for disease stratification and therapeutic strategies are the critical barriers to progress in this clinically challenged tumor subtype. Of particular interest in our lab is that the incidence and outcome of TNBC, varies among the different ethnic and racial groups; African and Latinas/Hispanic descents, are usually diagnosed at younger ages, with more advanced stages and with non-localized disease when compared to non-Hispanics Whites. We have focused in the characterization of the intrinsic molecular signatures of these patients’ TNBC genome, and their functional consequences in altering the tumor phenotype, which may form the biological basis of their cancer disparities. In addition to this project, we are actively pursuing the identification of molecular markers that are associated with the development of sentinel lymph node metastasis, the first node in the axilla to metastasize in breast cancer. This project has an important translational impact considering that the identification of such markers, which ideally could be detected in the primary tumor and/or breast fluids, can potentially lead to the ability to identify patients at high risk for lymph node metastasis, allowing for early intervention and more suitable adjuvant cancer treatments.

Sonia de Assis

Assistant Professor, Oncology
Dr. de Assis' website
deassiss@georgetown.edu
202-687-9518 (Office) 202-687-9239 (Lab)
Office:E408 New Research Building
Lab:E408 New Research Building
Education:PhD (Tumor Biology) Georgetown University
Current Research:Unlike the genome, which is relatively stable throughout an organism’s life span, the epigenome (DNA methylation, histone modifications, non-coding RNAs) is malleable to ensure short-term adaptation to the environment. The epigenome is most plastic during early development and environmental exposures during this period can have long-lasting effects. An extensive body of research in animals and humans shows that ancestral (both maternal and paternal) and in utero environmental and nutritional exposures can impact the health of the offspring in later life, through epigenetic reprogramming.

The research in my lab focus on understanding how the developmental origins of health and disease (DOHaD) concept applies to cancer predisposition, using animal models, in vitro systems and human cohorts. With funding from the Prevent Cancer Foundation and the National Cancer Institute, these projects are underway in my lab: 1) Epigenetic transmission of breast cancer risk through the paternal germ-line; and 2) Ancestral obesity and epigenetic reprogramming of pancreatic cancer risk in the offspring.

In the long run, our goal is to translate the findings from our animal models to the clinic and develop molecular markers of cancer risk to identify a specific sub-set of patients that may have an epigenetic predisposition to developing cancers and may benefit from epigenetic therapies. From a public health perspective, our studies can have an impact on our understanding of how lifestyle choices and environmental exposures can influence not only an individual’s health, but the well-being of future generations.

Giuseppe Giaccone

Professor, Medical Oncology & Pharmacology
Associate Director for Clinical Research, Lombardi Comprehensive Cancer Center
Dr. Giaccone's website
gg496@georgetown.edu
202-687-7072
Office:W503 New Research Building
Lab:E212 New Research Building
Education:M.D. University of Torino Medical School
Current Research: Dr Giaccone’s lab is investigating the mechanisms of action and resistance of novel anticancer agents targeted at specific genetic abnormalities present in the tumor. An area of research is the genetic analysis of lung tumors and thymic malignancies, using cutting edge technologies, such as massive parallel sequencing and array-CGH. In thymic malignancies we have identified and currently studying a number of genetic abnormalities that are associated to particular histological subtypes, which could be used as diagnostic markers and potentially targets for treatment. Among the drugs and pathways of interest, in particular we are studying epidermal growth factor receptor (EGFR) and ALK inhibitors in subsets of patients with non-small cell lung cancer. We are testing novel molecules that have the potential for reversing or circumventing resistance to EGFR and ALK inhibitors and elucidating their mechanism(s) of action. Among these molecules are irreversible inhibitors of the HER family of receptors and heat shock protein (HSP)-90 inhibitors. In addition we are investigating the roles of novel candidate proteins/genes identified by mass spec/phospho-tyrosine profiling and microarray approaches that are involved in EGFR inhibitor resistance, ALK signaling and metastasis in non-small cell lung cancer.

Kristi D. Graves

Associate Professor, Oncology
Dr. Graves's website
Dr. Graves's PCORI project
Kristi.Graves@georgetown.edu
202-687-1591
Office:Harris Building, 3300 Whitehaven Street, NW, Suite 4100
Education:Ph.D. (Clinical Psychology) Virginia Tech
Current Research: Dr. Graves received her Ph.D. in Clinical Psychology from Virginia Polytechnic Institute and State University and completed post-doctoral training at the University of Kentucky. She is a tenured Associate Professor of Oncology and in the Cancer Prevention and Control Program at the Lombardi Comprehensive Cancer Center at Georgetown University. Dr. Graves is leading a research project funded by the Patient-Centered Outcomes Research Institute to help Latina breast cancer patients and their caregivers improve their quality of life. This project is in collaboration with four community-based organizations. Dr. Graves also conducts research in the area of communicating genetic / genomic risk information about cancer risk. She is interested in behavioral and psychosocial outcomes for people at risk for and surviving cancer. Dr. Graves is also involved in teaching within Georgetown University Medical Center (tumor biology) and the Georgetown University School of Medicine (mind-body medicine; patient-physician communication).

Bassem Haddad

Assodiate Professor, Oncology
Dr. Haddad's website
haddadb1@georgetown.edu
202-444-0759
Office:E204A New Research Building
Lab:E204 New Research Building
Education:M.D. American University of Beirut, Lebanon
Current Research: The focus of our research is to identify, characterize and understand the molecular cytogenetic aberrations and instability involved in genetic diseases, particularly cancer. Precise definition of genetic imbalances and their accurate chromosomal map localization, gives us the opportunity to identify genes involved in tumorigenesis and tumor progression and understand their role. Our main goal is to translate the knowledge accumulated through research to clinical applications in the diagnosis and prognosis of diseases and in biomarker discovery. To achieve these research goals, we have established in our laboratory, a variety of molecular cytogenetic technologies including array comparative genomic hybridization (array CGH) and 24 color FISH by spectral karyotyping (SKY), in addition to routine cytogenetic and conventional FISH techniques, to study both the human genome and the mouse genome.

Claudine Isaacs

Professor, Medicine and Oncology
Dr. Isaacs's website
isaacsc@georgetown.edu
202-444-3677
Office:Podium A, Lombardi Building
Education:M.D. McGill University
Current Research: Dr. Claudine Isaacs is a Professor of Medicine and Oncology and the co-Director of the Breast Cancer Program at the Lombardi Comprehensive Cancer Center (LCCC) at Georgetown University. She is also the Medical Director of the Jess and Mildred Fisher Center for Familial Cancer Research. Dr. Isaacs has extensive experience in the conduct of clinical trials focusing on all aspects of breast cancer. Additional research interests include cancer risk assessment and medical management and prevention strategies for women at high risk for breast cancer. She has served as the PI of a variety of clinical trials in treatment of early-stage and metastatic breast cancer, and served as the PI of the Cancer Genetics Network site and the PLCO Trial at Georgetown University. She has also served as PI or co-investigator on a number of grants including those examining the role of novel screening or prevention measures in high risk women.

Ronit Yarden

Assistant Professor, Human Science
Dr. Yarden's website
riy2@georgetown.edu
202-687-6872
Office:St. Mary's Hall # 260
Lab:C302 Med-Dent Bldg
Education:Ph.D. (Biochemistry and Molecular Biology) Georgetown University
Current Research:Research in Dr. Yarden’s lab focuses on the role of the breast and ovarian tumor suppressor, BRCA1, in DNA damage signaling and in maintenance of genomic stability. Specifically, we study the significance of BRCA1 E3 ubiquitin ligase activity in cell cycle checkpoint control and the DNA damage response. Our interest in the interface between the ubiquitin system, additional post-translational modifications and the DNA damage response stemmed from our discovery that G2/M cell cycle proteins, cyclin B and Cdc25, are ubiquitylation substrates of BRCA1 in response to DNA damage. We are currently working on additional targets of BRCA1 and their contribution to tumor suppression. These studies aim to enhance our understanding of fundamental biological processes in cancer biology and to elucidate cellular mechanisms that contribute to development of resistance to chemotherapeutic drugs.
Recently, Dr. Yarden became interested in Strigolactones, a novel group of plant hormones. Dr. Yarden’s team was the first to discover the anti-tumorigenic effects of strigolactones that initiate cell cycle arrest and apoptosis in various human cancer cell lines and breast cancer stem-like cells but have minimal influences on noncancerous cells. We are investigating Strigolactone mechanism of action and working on development of these small molecules into therapeutic compounds.